Using CrlS Ammonia Observations To Improve Decision Making on PM_{2.5} Control Policies M. J. Alvarado¹, N. Heath¹, C. Calkins¹, C. R. Lonsdale¹, K. Cady-Pereira¹, E. H. Fahy¹ and M. Shephard² ¹Atmospheric and Environmental Research (AER) ²Environment and Climate Change Canada 2021 NASA Health and Air Quality Applications Program Review Oct. 12, 2021 ## NH₃ sources are not well known Biomass burning # Automobiles (catalytic converters) - Large urban centers - 50% of NH₃ in LA area (Nowak et al., GRL, 2012) - Fertilizer - Coal Mining - Power generation #### AGRICULTURE - Animal waste (temperature dependent) - Fertilizer application ### CrIS can identify NH₃ sources CrIS Satellite NH₃ warm season (Apr. – Sept., 2013) average surface map, with corresponding AMoN surface network measurements overlaid. CrIS Ground-Level NH₃ ## **Schematic Overview of Project Workflow** **Latest Updates: Calculation of** Final NH₃ **Emissions using** bidirectional flux Run Baseline **CMAQ** Run Final Optimized CMAQ Run FEST-C Perturbed CMAQ Four CMAQ Runs per Iteration Calculate Weighted **Emissions Scaling Factors** Run All Other NH₃ Perturbed CMAQ Calculate Beta for **Each Perturbation** #### **Update: Final Weighted Emissions Scaling Factors for** Bidirectional Input and All Other NH₃ Emissions #### **Applied to Bidirectional Flux Input** $$E_{t_{bidi}} = E_{a_{bidi}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{FESTC}}}{NH3_{TOTAL}} \right) \beta_{festc} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(\frac{NH_{3_{OTHER}$$ Limit: 0 – 5 #### Applied to All Other NH₃ Input $$E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3OTHER}}{NH3_{TOTAL}} \right) \beta_{other} \right)$$ Limit: 0 – 5 # Pre-inversion NH₃ (June 2015, 12US2) CrIS Monthly-Averaged Surface Conc (ppb) **Difference (CMAQ minus CrIS)** # Post-inversion NH₃ (June 2015, 12US2) **CrIS Monthly-Averaged Surface Conc (ppb)** CMAQ Sfc-Inv Monthly-Averaged Surface Conc (ppb) **Difference (CMAQ minus CrIS)** ## 12 km Run Comparison with AMoN #### **CMAQ BASE Comparison with AMON** ## 12 km Run Comparison with AMoN #### **CMAQ Iteration 1 – Surface Inversion Comparison with AMoN** # 36 km Run Comparison with AMoN #### **Current Work** Working with ECCC to get better prior NH₃ emissions over Canada Working with EPA to get 12US1 simulations for April 2018 Finalizing all code for distribution runs #### **Project ARL** - Start-of-Project ARL = 3 (11-16-2018) - Goal ARL = 7 - Current ARL = 5 (8-16-2021) ## Summary - This work will provide improved NH₃ emission inventories to air quality forecasters, managers, and other stakeholders. - Application of the inversion using bidirectional NH₃ flux for the first time for June 2015 proved successful. The process improved comparisons with CrIS and an independent dataset, AMoN. - Our ongoing work will make the approach applicable at 36 km across NA and provide EPA with emissions files for testing in their existing decision-making activities.